17 research outputs found

    Strontium optical lattice clocks for practical realization of the metre and secondary representation of the second

    Full text link
    We present a system of two independent strontium optical lattice standards probed with a single shared ultra-narrow laser. The absolute frequency of the clocks can be verified by the use of Er:fiber optical frequency comb with the GPS-disciplined Rb frequency standard. We report hertz-level spectroscopy of the clock line and measurements of frequency stability of the two strontium optical lattice clocks.Comment: This is an author-created, un-copyedited version of an article accepted for publication in Meas. Sci. Technol. The publisher is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at doi:10.1088/0957-0233/26/7/07520

    Accurate deuterium spectroscopy for fundamental studies

    No full text
    International audienceWe present an accurate measurement of the weak quadrupole S(2) 2-0 line in self-perturbed D2 and theoretical ab initio calculations of both collisional line-shape effects and energy of this rovibrational transition. The spectra were collected at the 247–984 Torr pressure range with a frequency-stabilized cavity ring-down spectrometer linked to an optical frequency comb (OFC) referenced to a primary time standard. Our line-shape modeling employed quantum calculations of molecular scattering (the pressure broadening and shift and their speed dependencies were calculated, while the complex frequency of optical velocity-changing collisions was fitted to experimental spectra). The velocity-changing collisions are handled with the hard-sphere collisional kernel. The experimental and theoretical pressure broadening and shift are consistent within 5% and 27%, respectively (the discrepancy for shift is 8% when referred not to the speed averaged value, which is close to zero, but to the range of variability of the speed-dependent shift). We use our high pressure measurement to determine the energy, ν0, of the S(2) 2-0 transition. The ab initio line-shape calculations allowed us to mitigate the expected collisional systematics reaching the 410 kHz accuracy of ν0. We report theoretical determination of ν0 taking into account relativistic and QED corrections up to α5. Our estimation of the accuracy of the theoretical ν0 is 1.3 MHz. We observe 3.4σ discrepancy between experimental and theoretical ν0

    Spectral line-shapes investigation with Pound-Drever-Hall-locked frequency-stabilized cavity ring-down spectroscopy

    No full text
    A review of recent experiments involving a newly developed Pound-Drever-Hall-locked frequency-stabilized cavity ring-down spectroscopy (PDH-locked FS-CRDS) system is presented. By comparison to standard FS-CRDS, the PDH lock of the probe laser to the ring-down cavity optimized coupling into the cavity, thus increasing the ring-down signal acquisition rate nearly 300-fold to 14 kHz and reducing the noise-equivalent absorption coefficient by more than an order of magnitude to 7 × 10−11 cm−1. We discuss how averaging approximately 1000 spectra yielded a signal-to-noise ratio of 220000. We also discuss how the spectrum frequency axis was linked to an optical frequency comb, thus enabling absolute frequency measurements of molecular optical transitions at sub-MHz levels. Applications of the spectrometer to molecular line-shape studies are also presented. For these investigations, we use semi-classical line-shape models that consider the influence of Dicke narrowing as well as the speed dependence of the pressure broadening and shifting to fit spectra. We show that the improved precision and spectrum fidelity of the spectrometer enable precise determinations of line-shape parameters. We also discuss the importance of line-shape analysis with regard to the development of new spectroscopic databases as well as in the optical determination of the Boltzmann constant

    Spectral line shapes of P-branch transitions of oxygen B-band

    No full text
    <p>The precise line-shape measurements of self- and foreign-broadened P-branch transitions of the oxygen B band near 689 nm are presented. Data were obtained using the Pound–Drever–Hall-locked frequency-stabilized cavity ring-down spectrometer assisted by the optical frequency comb.<sup>1,2</sup> This technique enables us to achieve high spectral resolution (about 1 MHz) and high signal-to-noise ratio spectra (above 10000:1) of weak transitions.<sup>3,4</sup> It is showed that the inclusion of the line-narrowing effects (Dicke narrowing or the speed dependence of collisional broadening) is necessary to properly model measured line shapes. The multispectrum fitting technique is used to minimize correlation between line-shape parameters. Relations between the line narrowing obtained from different line-shape models in the low pressure limit (below 5 kPa) were verified experimentally. Line positions with uncertainties of about 170 kHz, intensities and the collisional broadening coefficients with uncertainties of about 0.5% are reported and compared to data available in the literature.<sup>5</sup></p> <p>The research is part of the program of the National Laboratory FAMO in Toruń, Poland, and is supported by the Polish National Science Centre Projects no. DEC-2011/01/B/ST2/00491 and UMO-2012/05/N/ST2/02717. The research is also supported by the Foundation for Polish Science TEAM and HOMING PLUS Projects co-financed by the EU European Regional Development Fund. A. Cygan is partially supported by the Foundation for Polish Science START Project.</p
    corecore